132 research outputs found

    Controlling excessive waiting times in emergency departments: an extension of the ISA algorithm.

    Get PDF
    In an emergency department (ED), the demand for service is not constant over time. This cannot be accounted for by means of waiting lists or appointment systems, so capacity decisions are the most important tool to influence patient waiting times. Additional complexities result from the relatively small system size that characterizes an ED (i.e. a small number of physicians or nurses) and the presence of customer impatience. Assuming a single-stage multiserver M(t)/G/s(t) + G queueing system with general abandonment and service times and time-varying demand for service, we suggest a method inspired by the simulation-based Iterative Staffing Algorithm (ISA) proposed by Feldman and others (2008) as a method to set staffing levels throughout the day. The main advantage of our extension is that it enables the use of performance measures based on the probability of experiencing an excessive waiting time, instead of the common focus on delay probability as a performance metric.Emergency department; Personnel planning; Time-varying arrival rate;

    A discrete time Markov chain model for a periodic inventory system with one-way substitution.

    Get PDF
    This paper studies the optimal design of an inventory system with “one-way substitution”, in which a high-quality (and hence, more expensive) item fulfills its own demand and simultaneously acts as backup safety stock for the (cheaper) low-quality item. Through the use of a discrete time Markov model we analyze the effect of one-way substitution in a periodic inventory system with an (R,s,S) or (R,S) order policy, assuming backorders, zero replenishment leadtime and correlated demand. In more detail, the optimal inventory control parameters (S and s) are determined in view of minimizing the expected total cost per period (i.e. sum of inventory holding costs, purchasing costs, backorder costs and adjustment costs). Numerical results show that the one-way substitution strategy can outperform both the “no pooling” (only product-specific stock is held, and demand can never be rerouted to stock of a different item) and “full pooling” strategies (implying that demand for a particular product type is always rerouted to the stock of the flexible product, and no product-specific stock is held) − provided the mix of dedicated and flexible inputs is chosen adequately − even when the cost premium for flexibility is significant. Furthermore, we can observe that decreasing the demand correlation results in rerouting more demand to the flexible product and because of the risk-pooling effect reduces the optimal expected total cost.Inventory management; One-way substitution;

    A lost sales inventory model with a compound poisson demand pattern.

    Get PDF
    Sales; Inventory; Model; Demand; University; Research;

    Optimizing campaign sizing policies: an application to a real-life setting.

    Get PDF
    This paper presents an integrated production inventory model that enables to capture the tradeoffs between average inventory, production capacity and customer service level in a semiprocess industry setting. The model includes different features that are specific for such a setting, such as differences in reactor yield and quality requirements across products, the need for cleaning reactors when switching between product types, and the requirement to produce products in campaign sizes that are an integer multiple of the reactor’s batch size. The model can be used to support midterm planning procedures. In this paper, we illustrate the application of the model to real-life data of two product families at a large specialty chemicals company, which for reasons of confidentiality is further referred to as Company C.Queueing; Campaign sizing; (Semi)process industries;

    Constrained optimization in simulation: a novel approach.

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation modeling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Kriging metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outperforms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    Order batching in multi-server pick-and-sort warehouses.

    Get PDF
    In many warehouses, customer orders are batched to profit from a reduction in the order picking effort. This reduction has to be offset against an increase in sorting effort. This paper studies the impact of the order batching policy on average customer order throughput time, in warehouses where the picking and sorting functions are executed separately by either a single operator or multiple parallel operators. We present a throughput time estimation model based on Whitt's queuing network approach, assuming that the number of order lines per customer order follows a discrete probability distribution and that the warehouse uses a random storage strategy. We show that the model is adequate in approximating the optimal pick batch size, minimizing average customer order throughput time. Next, we use the model to explore the different factors influencing optimal batch size, the optimal allocation of workers to picking and sorting, and the impact of different order picking strategies such as sort-while-pick (SWP) versus pick-and-sort (PAS)Order batching; Order picking and sorting; Queueing; Warehousing;
    corecore